Main Supervis	Dr Sonny Pham
or	
Is the	YES/NO
main	
superviso	
r an	
ECR/MCR	
?	
Other	Dr Susannah Soon
superviso	Prof Tom Gedeon
rs (if	Yue Yao (ANU)
applicabl	
e)	
Project	Exploring deep learning using generated synthetic images via Unity simulations
Title	
Duration	8 weeks
of	o weeks
project	
(select	
between	
4 and	
eight	
weeks)	
Project	Artificial Intelligence (AI) techniques in computer vision, image processing, data
Descripti	analytics etc., have seen phenomenal growth. Often, these rely on deep neural
on .	networks, requiring large datasets for their success. In particular, large, annotated
	datasets are required when using supervised learning e.g. Figure 1. [2, 3, 6, 7]. Whilst
	models can be trained with limited annotated data, the resulting performance can be
	reduced. Such consequences are more critical in specialised applications, such as
	defence and medical image analysis. In such domains, it is often hard to collect and
	annotate real data, and impractical to access comparable image datasets.
	Our project involves training autonomous vehicles to drive in a streetscape
	environment. Here, we extend successful vehicle identification work using synthetic
	imagery [10], by generating rich and effective synthetic image data using Unity
	simulations (e.g. Unity Simulation and the LGSVL Simulator) [8] and Unity's Computer
	Vision [9] capabilities. We would like to examine various approaches to generating
	synthetic imagery via Unity, this involves developing a digital twin of the environment,
	and examining the pipeline process of capturing tens of thousands of streetscape
	screenshots as training data to train the vehicles' autonomous behaviour. There are
	some existing synthetic image examples e.g. Figure 2 [1, 4, 5], however, the scale of
	the datasets, and image features are unsuitable for our specific scene characteristics.
	We expect that Unity generated synthetic data will enable us to fine-tune control the
	images captured: the level of detail and features; different weather and lighting
	conditions, and the quality of rendering. In addition, the workflow developed will allow
	us to automate training and testing easily with custom scripts. Given the current
	limited number of new training samples, this approach will allow us to augment the
L	inneed namber of new daming samples, this approach will allow us to augment the

2022 School of EECMS Summer Internship Application Form

[3] Cityscapes dataset, <u>https://www.cityscapes-dataset.com/examples/#fine-annotations</u>
[4] Smart Camera Outdoor, <u>https://github.com/Unity-Technologies/Unity-Simulation-Smart-</u> <u>Camera-Outdoor</u>
[5] Generating Synthetic Data for Image Segmentation with Unity and PyTorch/fastai <u>https://blog.stratospark.com/generating-synthetic-data-image-segmentation-unity-pytorch-fastai.html</u>
[6] Singha, T., DS. Pham, and A. Krishna. FANet: Feature Aggregation Network for Semantic Segmentation. In Proc. Digital Image Computing: Techniques and Applications (DICTA), pages 1– 8. IEEE, 2020.
[7] Singha, T., DS. Pham, A. Krishna, and J. Dunstan. Efficient segmentation pyramid network. In Proc. International Conference on Neural Information Processing, pages 386–393. Springer, 2020.
[8] Unity Simulation and the LGSVL Simulator, <u>https://unity.com/products/unity-simulation</u>
[9] Unity Computer Vision, <u>https://unity.com/products/computer-vision</u>
[10] Yao, Y, Zheng, L., Yang, X, Naphade, M., Gedeon, T., Simulating Content Consistent Vehicle Datasets with Attribute Descent, European Conference on Computer Vision – ECCV 2020, pp 775-791.